Embedded Non Volatile Memories for Consumer Applications: Status and Perspectives

Paola Zuliani

Workshop on Innovative Memory Technologies
Grenoble, June 21st 2012
• Embedded Non Volatile Memory
 • Challenge and Opportunity
 • Status

• Emerging Technologies
 • Key Features
 • Applications

• ePCRM Overview
Outline

• Embedded Non Volatile Memory
 • Challenge and Opportunity
 • Status

• Emerging Technologies
 • Key Features
 • Applications

• ePCM Overview
eNVM Applications

Two key functions
- Code Execution
- Data Management
• Industrial and automotive applications are the most important segments

• MCU market size is expected to grow, as well as the NVM content per MCU

K. Baker, Freescale (IMW 2012)
eNVM Market Challenges

• Market trends impose severe challenges to embedded Non Volatile Memories

• Major factors
 • Price Erosion
 • Fast Program/Erase operation needs
 • Low Power Supply operating conditions
 • High cycling capability
 • Retention
 • Granularity (capability to erase/program Byte or Word)
eNVM Technology Challenges

- Cell Scalability
- Cost
- Performance
- Power Consumption
- Reliability

⚠️ Different ranking of the above parameters depending on the specific application
Today eNVM Solutions

- **EEPROM**
 - Low Power \rightarrow P/E by Fowler Nordheim
 - Reliability
 - Cell Size \rightarrow 2T architecture
 - 15V Operation
 - Bit granularity

- **FLASH NOR**
 - Low Power \rightarrow Programming by Hot Carrier
 - Reliability
 - Cell Size
 - 10V Operation
 - Sector/ page granularity

- **FLASH Split-Gate**
 - Low Power programming \rightarrow SSI
 - Endurance granted by design
 - Cell Size \rightarrow 1.5T
 - Process Complexity
 - Page granularity

- **Low-End products**
 - i.e. mainly driven by cost

- **High-End products**
 - i.e. mainly driven by performances and/or reliability

- **Low Power products**
 - i.e. mainly driven by low power consumption
FG Limiting Factors

- FG cell scalability is achieving its limits
 - Reduced cell current at each techno step → difficult sensing operation between different cell states
 - Reduced coupling factors → increased internal voltage generation to compensate

- FG Program/Erase operations increase internal complexity
 - Flash requires the usage of complex verify algorithm
 - EEPROM requires very high internal voltage to activate the cell
 - Design solution for Low Power Supply embedded products

- Byte or word alterability is still an added value
 - FG is not a universal solution
 - EEPROM or Flash are used according to the application
• Embedded Non Volatile Memory
 • Challenge and Opportunity
 • Status

• Emerging Technologies
 • Key Features
 • Applications

• ePCM Overview
Emerging Technologies: the eNVM case

- FG solution is difficult to integrate with high-K metal gate technology for advanced CMOS
- Due to very different applications a single cell/architecture can hardly cover all the needs
- New technologies look-up is essential for the leadership in the eNVM world
Emerging eNVM

- **Key factors**
 - Easy to integrate into the baseline logic platform
 - Suitable to fit application requirements
 - Cost

- **Guidelines**
 - Integration in the Back-End of the process (after contact definition)
 - Compact cell area
 - No impact on CMOS
 - Reliability and Low Power
 - Wide range of applications
 - Automotive (Zero Defect requirements) should rely on volume production, possibly for Stand-Alone memories (same as today FLASH route)
 - Few additional masks
Embedded Non Volatile Memories for Consumer Applications: Status and Perspectives
From MRAM to STRAM (1/2)

MRAM
- Assessment of field MRAM for High Reliability applications (16Mb, 1.42μm² cell size at 180nm node, IBM 2004)
- Need read before write
- Poor scalability below 90nm

STRAM
- Perpendicular Magnetic Anisotropy (PMA) materials mandatory for low write current
- $\Delta R/R \sim 200\%$ to be compatible with CMOS ➔ very low reading window available for memory industry
- Trade-off between low write current density and thermal stability
- STRAM technology is challenging (very complex multi-layer stack)
From MRAM to STRAM (2/2)

MRAM BUILDING BLOCK: THE MTJ

- Nevertheless there is an increasing interest from industry…
RRAM (1/2)

• The Resistance change is due to formation and dissolution of a conductive filament in a dielectric layer

• Three categories
 1. Unipolar systems (thermally assisted, very high current)
 2. Bipolar Conductive Bridge (CBRAM): electrochemical dissolution and re-deposition of an active electrode
 3. O-RRAM: based on movements of Oxygen anions

R.Waser, IEDM 2011 Tutorial

Embedded Non Volatile Memories for Consumer Applications: Status and Perspectives 27/06/2012
RRAM represents one of the most interesting technology solutions for alternative eNVM - especially for Low Power applications.

Nevertheless, storage mechanism is not fully understood.

Reliability assessment of RRAM technology is far from maturity level reached on PCM:
 - Long-term reliability (solid extrapolation at 10y)
 - Retention vs write power
 - Trade-off between cycling and HTDR
 - Behavior at very high temperature (>100C)

Some hints but no data on scalability.
Outline

• Embedded Non Volatile Memory
 • Challenge and Opportunity
 • Status

• Emerging Technologies
 • Key Features
 • Applications

• ePCM Overview
New Materials: Past and Future

Semiconductor industry has been driven by introduction of new materials over decades
Chalcogenide Alloys over Decades

- Reference Phase Change material for memories is $\text{Ge}_2\text{Sb}_2\text{Te}_5$
ePCM Competitive Advantage

- Easier to be integrated with advanced logic
 - lower voltage
 - no impact on CMOS front-end

- Cost-effective
 - few additional masks (only 3 masks overhead for storage element definition)
 - smaller cell vs. EEPROM, smaller over-head vs. FLASH

- Better performance
 - single bit over-write
 - programming speed
 - endurance
A true 3D integration of Non Volatile Memory
ePCM Outlook

• PCM is the most mature among novel memory concepts
 • Micron and Samsung starting stand-alone memory production at 45nm

• Embedded PCM Technology is developed in synergy with stand-alone mainstream
 • Same storage element, with MOS as selector
 • Feasibility at 90nm node demonstrated for consumer applications

• Embedded PCM can be a real breakthrough for process cost saving and performances
 • NVM integrated in BEOL
 • Best in class for power consumption and write data throughput, perfectly fitting contact-less secure microcontrollers requirements
High level of confidence in terms of:

- **Yield**
 - \(\sim 90\% \) on 4Mbit Test Chip (with redundancy)

- **Reliability**
 - 10y retention at 85C granted
 - \(>10M \) cycles cell level
 - 1ppm defectivity after 100k cycles: solid data collection on 4Mb

- **Storage Mechanism**
 - Retention vs write power
 - Failure modes
• Less critical than FLASH memory in terms of
 • Cycling at High Temperature
 • Retention after cycling
 • Extended endurance

• New retention concept
 • It is a matter of probability for crystallization
 • No “weak” bits in the array
e-PCM integration – 4Mbit Test Chip

- A 4Mbit Test Chip integrated in 6 metal levels 90nm process for extrinsic evaluation of e-PCM cell
Set and Reset Distributions

• A strong cell-level signal (3 decades change in resistance) must be translated in reading window in the µA region

Read Window
25µA

Ref. Current
16µA

Embedded Non Volatile Memories for Consumer Applications: Status and Perspectives
ePCM for Low Power

- Thanks to
 - Medium Voltage operation (<3.3V)
 - Very fast Reset operation (<100ns)
 - Low current Set operation (~I_{reset}/2)
 - Low Voltage Read operation (<1.2V)
 - GO1 Row/Column decoder
 - Bit alterability (no need of Erase before Program)

- ePCM solution results best-in-class in terms of
 - Electrical performances (access time, consumption, throughput)
 - Capability to achieve aggressive contact-less requirements
- ePCM Cell is defined by:
 - Circuitry rules in Y direction
 - Reset current in X direction

- Aggressive cell area in the range of 18F² can be obtained
 - Still room for improvement with proper GST optimization, e.g. by doping
 - Cell scalability granted for next technology nodes (65nm, 45nm and beyond)

- Very compact macrocell results from small circuitry overhead needed for row/column decoder, charge pumps, no recovery algorithms
Commonly used Ge$_2$Sb$_2$Te$_5$ has crystallization temperature close to 150C:
- No way to preserve code content after soldering (2min at 260C)
- Big challenge and refresh concept to fit automotive specs (some years HTDR at 150C)

By modifying the percentage of Ge-Sb-Te in the alloy, crystallization temperature ranging from 150C up to 400C have been obtained

Customization of material inside ternary diagram is feasible (i.e. retention, SET speed or programming current)
Conclusions (1/2)

• MCU market size is expected to grow, as well as the NVM content per MCU, so representing an important business opportunity

• By considering scaling trends, FG solution seems difficult to integrate with high-K metal gate technology for advanced CMOS

• Among emerging technologies, the whole family of RRAM and the STRAM appear particularly appealing (in particular, CBRAM seems promising for Low Power applications)

• Nevertheless, it is a long journey towards a reliable industrial solution…
Conclusions (2/2)

- PCM is the most mature among novel memory concepts (production started at ~Gb densities and ~45nm technology node)
- Embedded PCM Technology is developed in synergy with stand-alone mainstream and can be a real breakthrough for process cost saving and performances
- Major progress in Materials Exploration activity
 - 10 years HTDR at T>150C demonstrated cell level
 - Good confidence to overcome soldering limitations
 - Key features for Low Power applications confirmed
Acknowledgments

• The whole Team (process, device, reliability) working on ePCM development

• Micron Process R&D Team of Agrate Brianza

• R.Annunziata, A.Maurelli, A.Conte for valuable suggestions
Thank you!