

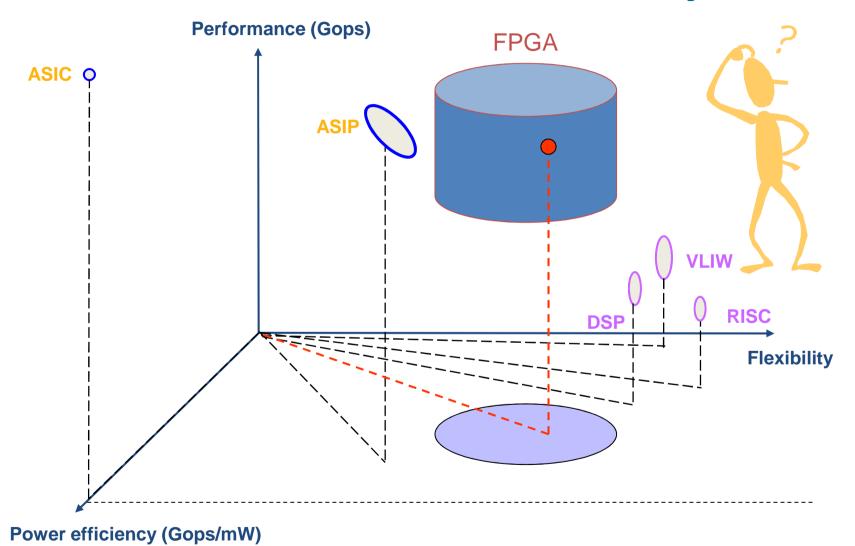
# Using OxRAM for saving power in FPGA architecture: what can we expect?

**Fabien Clermidy** 

## IC market trends: Applications

- Communications and consumers products outperform computers since 2000
- New applications appear => autonomous systems






## What is an autonomous system?

- Pervasive electronic not visible from final user
- Sleep mode is the normal mode
- Wake-up must be fast, high computing demand in burst mode
- Multiple applications but low to medium market size for each application
- **Examples:** 
  - Smartgrids
  - Health-care systems
  - Sensor Networks



## Architecture for autonomous systems?





#### **FPGA Market**

- About 90% of market controlled by SRAM-based FPGA
  - Long set-up time
  - Large power consumption



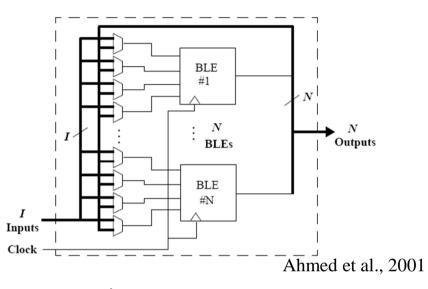
Low Price ~ \
Or
high Capacitý

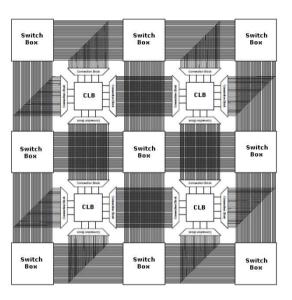
- Non-volatile FPGA opportunities
  - Instant power up
  - Data integrity
  - low power modes
  - → Small niche applications : Space, Defense



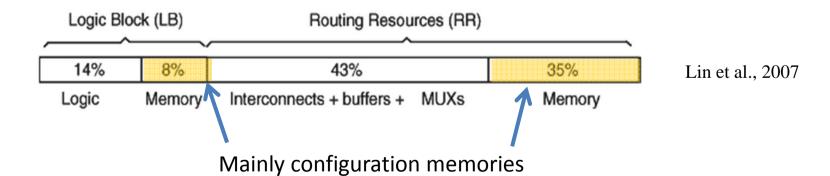








## FPGA for autonomous systems

- ✓ Flexible / adaptable
- ✓ Scalable
- ✓ High performance
- ✓ Simple and fast boot procedure (no software stack)
- Dynamic power consumption
- ✓ High leakage




## **Field Programmable Gate Array**





Logic element = CLB

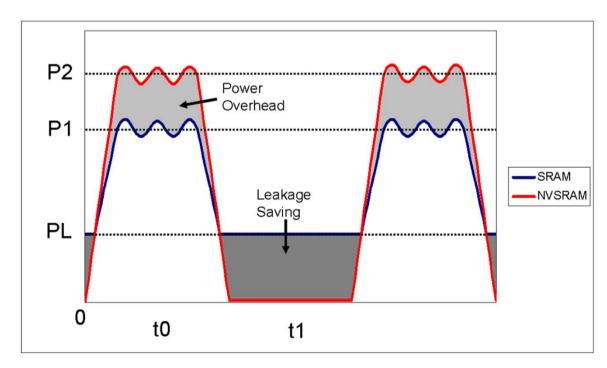


## **Instantly-on operation**

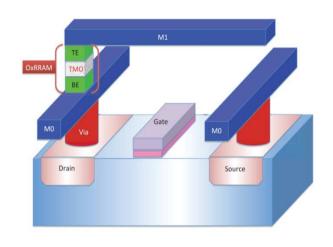
#### Main idea:

- Power-off of FPGA during long idle times
- Non-Volatile SRAM (ReRAM-based technology) for « instantaneously » restoring FPGA state after power-off

#### **Questions:**

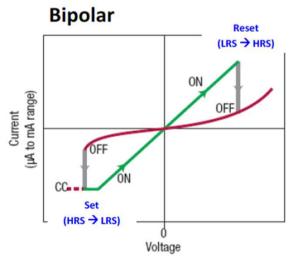

- Cost of power-off versus ideal idle state (no dynamic power)?
- Cost of power-on?
- Is it really « instantaneous »?




## Power gain: Break-Even Time (BET)

- BET = t1/t0 ratio for equivalent power consumption
- Expected gains for higher t1/t0 ratio must be also considered

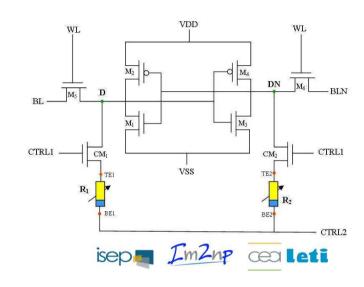
$$BET = \frac{t_0}{t_0 + t_1} = \frac{1}{1 + \left(\frac{P_2 - P_1}{P_L}\right)}$$




## **Bipolar Oxide-based Resistive RAM**



#### Features:


- Non Volatile: data is retained when powered-off
- Weigh density & faster.
- Compatible with CMOS BEOL.



- Exhibits bipolar behavior i.e. Set & Reset at opposite polarities.
- Two stable resistance states LRS (Low Resistance State) and HRS (High Resistance State)
- Resistance ratio (R<sub>off</sub>/R<sub>on</sub>) ranging from 10-100

## **NVSRAM** as a configuration point

- 22nm FDSOI LETI technology
  - Low-leakage technology (equiv. 45nm)
- Bipolar OxRRAM compact model from IM2NP
- NVSRAM design from ISEP
- Spice simulation

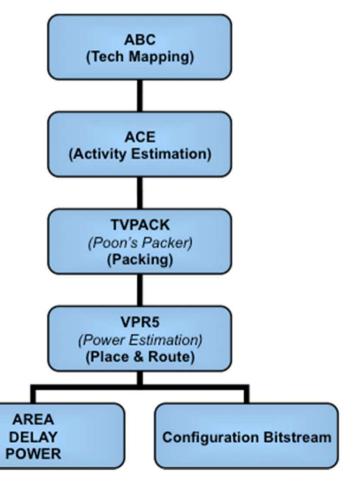


Number of min. size transistors

SRAM 11.5 NVSRAM 15.25

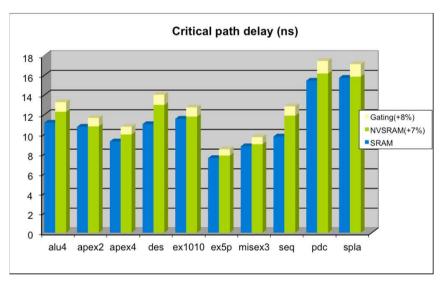


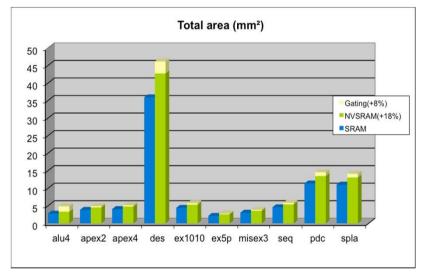
## **NVSRAM** operations power costs

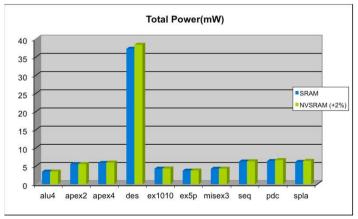

|               | Pavg(nW) | Duration(ns) | Energy(fJ) |
|---------------|----------|--------------|------------|
| Reset         | 425      | 20           | 8,5        |
| Store         | 434      | 20           | 8,7        |
| Power down    | 0,06     | 3800         | 0,23       |
| Restore       | 28       | 20           | 0,56       |
| Avg. power fo | 0,20     |              |            |

=> Instaneous = 20 ns, compatible with most of the applications




## FPGA experimental methodology


- VPR5 from Toronto
- Added power estimation
- **FPGA** 
  - 10 BLE / CLB
  - 22 Inputs / CLB
- SRAM based design
- NVSRAM with power switches
- **Testbenches** 
  - Combinational and sequential circuits
  - Low to Medium complexity
  - => ALU4 to cyphering (DES)





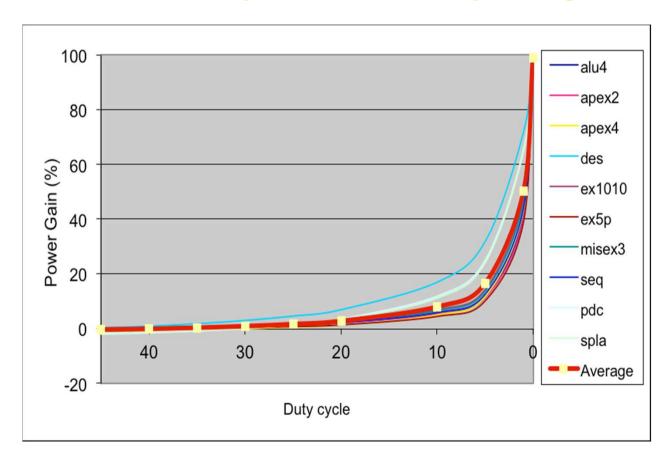

## **Comparison with SRAM-based FPGA**










## **Break-Even Time**

| Circuit | POH (mW) | PL(μW) | BET (%)      |
|---------|----------|--------|--------------|
| alu4    | 0,03     | 24,97  | 48,24        |
| apex2   | 0,04     | 37,90  | <b>50,64</b> |
| apex4   | 0,11     | 46,66  | 30,46        |
| des     | 1,12     | 994,48 | 47,01        |
| ex1010  | 0,04     | 39,89  | 47,08        |
| ex5p    | 0,04     | 24,63  | 36,17        |
| misex3  | 0,04     | 37,12  | 46,66        |
| seq     | 0,05     | 50,22  | 48,06        |
| pdc     | 0,28     | 129,26 | 31,36        |
| spla    | 0,29     | 120,07 | 29,62        |
| Average |          |        | 42,26        |



## Gains depending on On/Off duty cycle

#### 1% on/off => > 50% power consumption gain





## **Conclusion & perspectives**

- Demonstrated ReRAM-based design for reducing power in FPGA
- Open new application fields for reconfigurable logic
- Efficient cooperation network for speeding-up research to industry
- Perspectives:
  - NVFF for full context « freeze »
  - Applications to other architectures



## **Acknowledgement**

IM2NP: Jean-Michel Portal, Christophe Müller

ISEP: Hraziia, Costin Anghel, Amara Amara

LETI: Ogun Turkyilmaz, Marina Reyboz, Santhosh **Onkaraiah** 

## SAVE THE DATE

