Interface Engineering of PCM for Improved Synaptic Performance in Neuromorphic Systems

<u>M. Suri</u>¹, O. Bichler², Q. Hubert¹, L. Perniola¹, V. Sousa¹, C. Jahan¹, D. Vuillaume³, C. Gamrat², B. De Salvo¹

¹CEA-LETI, ²CEA-LIST, ³CNRS-IEMN (France)

What...?

Taking inspiration form computational neuroscience and learning mechanisms inside the brain

Why?

- Massive Parallelism
- Scalability (< 2L : the brain)</p>
- Low Power (~ 20W: the brain)
- Immunity to Variability

Information Storage and Processing are not entirely different tasks "Memory is Intelligent"

How? Neuron + Synapse + Learning Rule

Neuron

Source of Spikes or Action Potentials (electrical pulses)

Integrates all the incoming spikes and fires when a threshold is reached

Synapse

Communication channel or the medium between neurons.

Plasticity – can either Potentiate (LTP) or Depress (LTD)

Learning Rule

The protocol to change the synaptic weights (STDP)

Source of Inspiration...?

Region of the brain responsible for vision Cerebral cortex, hippocampus, hypothalamus...

Main Issues? (Very Large Numbers) Neurons: 1.1 x 10¹⁰ Synapses: 10¹⁴ – 10¹⁵

> Need a Device which can change and remember simultaneously!! High transistor count to implement synapse circuit capable of learning !! Resistive memories for synapses...

State-of-the-art

Different Strategies of Implementing STDP on PCM devices

D. Kuzum et. al . Nano Letters, 2011

The '2-PCM Synapse'

Spiking Neural Network

Advantages

- **1. Simplified Pulse Schemes**
- 2. Very Low-Power
- 3. Based on Crystallization

M. Suri et. al . IEDM, 2011

In this Work

Improved System Efficiency compared to GST synapses

Low Power at device Level
Low Power at System Level

Large Scale Demonstration (2 million synapses)
Real World Learning Application (Pattern Extraction)

CMOS Neuron + PCM Synapse

Our Approach

Resistance – Current (LTP/LTD)

Resistance – Current (LTP/LTD)

SET to RESET transition = Synaptic Depression (LTD) RESET to SET transition = Synaptic Potentiation (LTP)

Forming Step – to break the HfO₂ Layer

10

Improvement compared to GST devices

Reduction in Set and Reset Current (> 60%)

reduction in the effective contact area between the plug and the GST layer
Less heat-loss (better thermal insulation)

Programming Current reduction due to Interface layers (HfO₂ and TiO₂)

Potentiation (LTP) – GST + HfO₂

Conductance (Crystallization) increases with increase in pulse number and width

Improvement compared to GST devices

Increased number of intermediate resistance points in the LTP curve (more than double of GST)

Possible impact of interface layer on crystallization

Capping layer can affects the Growth and the Nucleation rate

Based on the type of capping layer and the film thickness, the activation energy for crystal growth can either increase of decrease

R. Pandian, et al., JAP 100, 123511 2006

Manan Suri, LETI Memory Workshop – 21st June, 2012

Our Approach

The '2-PCM Synapse'

LTP device: Current is Added, LTD device: Current is Subtracted We use two devices to avoid the problem of abrupt LTD in PCM

Feed Forward Neural Network: Simulation

2- Layer Spiking Neural Network
Total Neurons: 70 (60 + 10)
2 Synapses per neuron (Inhibiting/Exhibiting)
Total Synapse ~ 2 million => 4 million PCM Devices

LTP characteristics used in simulations

20% Standard Dev. Dispersion added to model robustness to variability of the neural network

Biological and simplified STDP learning rule

Pre- Neuron spikes before Post- Neuron: Potentiation (LTP)

Post- Neuron spikes before Pre- Neuron: Depression (LTD)

% Change in Synaptic Weight is constant Extended LTD window

Our Approach

Data for our Neural Network

DVS Silicon Retina-Generates AER data 128 x 128 pixels (Address Event Representation)

P. Lichtsteiner, et al , IEEE J. Solid-State Circuits, Vol. 43, 2008.

Recorded Data – Cars passing on a Freeway

Relative Change in the luminous intensity at each pixel is an event

AER = Pixel Address + Time Stamp + Event

Feed Forward Neural Network: Simulation

2- Layer Spiking Neural Network
Total Neurons: 70 (60 + 10)
2 Synapses per neuron (Inhibiting/Exhibiting)
Total Synapse ~ 2 million => 4 million PCM Devices

Evolution of Neuron Sensitivity during Learning

Recorded Stimuli Neuron - 1 Neuron - 2

Learning Results (Detection of Cars in individual lanes)

Total Learning duration ~ 10 minutes Avg. Lane Detection Rate > 90 %

Final Sensitivity Map for 10 Neurons

Performance and comparison to GST devices

Pulse Type	/device	/device/sec	Total	
GST Devices				
Read	1265	1.9	4.97 x 10 ⁹	
Set	106	0.16	4.16 x 10 ⁸	
Reset	4.2	0.0062	1.65 x 10 ⁷	
Total System Learning Power = 112µW				
GST + HfO2 Devices				
Read	1265	1.9	4.97 x 10 ⁹	
Set	144	0.21	5.64 x 10 ⁸	
Reset	2.6	0.0038	1.00 x 10 ⁷	
Total System Learning Power = 60µW				

Manan Suri, LETI Memory Workshop – 21st June, 2012

Performance and comparison to GST devices

Pulse Type	/device	/device/sec	Total	
GST Devices				
Read	1265	1.9	4.97 x 10 ⁹	
Set	106	0.16	4.16 x 10 ⁸	
Reset	4.2	0.0062	1.65 x 10 ⁷	
Total System Learning Power = 112µW				
GST + HfO2 Devices				
Read	1265	1.9	4.97 x 10 ⁹	
Set	144	0.21	5.64 x 10 ⁸	
Reset	2.6	0.0038	1.00 x 10 ⁷	
Total System Learning Power = 60µW				

Manan Suri, LETI Memory Workshop – 21st June, 2012

Conclusions

- We propose the '2-PCM Synapse', a unique programming methodology and a novel feed forward Neural Network based on PCM synapses.

-We show a real world application using our neuromorphic system based on PCM synapses – complex visual pattern extraction

- Addition of HfO₂ interface layer to GST devices increases the system power/energy efficiency by-

a)Decreasing the lset and lreset b)Increasing the number of intermediate resistance states in the LTP curve

-Total synaptic programming power is as low as 60µW with interface layer PCM synapses.

Questions??

Thank you for your Attention!!

(manan.suri@cea.fr)