

innovations for high performance microelectronics

In-operando HAXPES as a non-destructive technique for investigating the resistive switching phenomenon

<u>Thomas Bertaud</u>¹, Malgorzata Sowinska¹, Damian Walczyk¹, Sebastian Thiess², Thomas Schroeder^{1,3}, and Christian Walczyk¹

4th Leti Workshop on Innovative Memory Technologies

Thursday 21st June 2012 – Grenoble

¹ IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany ² DESY Notkestrasse 85 22607 Hamburg Germany

³ BTU Konrad-Zuse-Strasse 1 03046 Cottbus Germany

Outline

1. Motivation

- Embedded Non-Volatile Memory
- Material Research for RRAM at IHP

2. "In-operando" measurements

- HAXPES, a non-destructive study
- in-operando experiment

3. $V_0^{"}$ -based RS mechanism

- Study of the electroforming
- *in-operando* study of the OFF- and ON-states

4. Conclusion & Outlook

1. Motivation

- Embedded Non-Volatile Memory
- Material Research for RRAM at IHP
- 2. "In-operando" measurements
 - HAXPES, a non-destructive study
 - in-operando experiment
- 3. V_o^{...}-based RS mechanism
 - Study of the electroforming
 - in-operando study of the OFF- and ON-states
- 4. Conclusion & Outlook

1.1. Embedded Non-Volatile Memory (eNVM)

- Advantages of eNVM:
 - Low-power dissipation
 - I/O pins reduced
 - Reduced system cost
 - Reduced PCB area
 - Improved data security

- eNVM developed for IHP's Si CMOS technology platform for SoC solutions.
- Improvement of performance specifications compared to established eNVM modules.

	FRAM (ferroelectric)	MRAM (magnetic)	PCM (phase change)	RRAM (resistance change)
Storage Mechanism	Permanent polarization of a ferroelectric material (PZT or SBT)	Permanent magnetization of a ferromagnetic material in a MTJ	Amorphous/poly-crystal phases of chalcogenide alloy	Resistance states in oxides
Cell Size F ²	Large ~40 → 20	Large ~25	Small ~8	Small ~ 4
Scalability	Poor	Poor	Good	Good
Endurance	10 ¹⁰ (destructive read)	>10 ¹⁴	10 ¹²	10 ¹²
Write	Low power capacitive Theoretically good speed	Power constrained, Scales poorly	Power constrained, Improves with scaling	Low power
Application	Embedded, Low Density	Embedded, Low Density	Stand Alone or Embedded High Density, Low Cost	Embedded, Low Density
Maturity	Limited prod.	Test chips	Test chips	Test chips
Cell Cross-Section	Samsung, IEDM 04	IFX-IBM, VLSI-TSA 05	Metal GSJ Poly SL Poly W plug	

• Advantages of Resistive RAM as eNVM

- High academic research relevance.
- Cost-effective back-end-of-line (BEOL) process integration.
- Improved performance specifications compared to established eNVM (low-power).

1.2. Benchmark

<u>Hynix</u>: 256-kbit array with TiO_2/Al_2O_3 (Memory Workshop, Grenoble, June 2011)

<u>Panasonic</u>: 256-kbit array with Ir/Ta₂O₅/TaO_x (IEDM 2011)

<u>ITRI</u>: 4-<u>M</u>bit array with TiN/Ti/HfO₂/TiN (IEEE ISSCC, 2011)

<u>IMEC</u>: 10×10 nm² record RRAM with Hf/HfO₂ (IEDM 2011)

And also Hewlett Packard, Samsung...

Increasing interest and focus on HfO₂ and Ta₂O₅-based systems. Towards memory array demonstrators realization!

1.3. Material Research for RRAM

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

7

- 1. Motivation
 - Embedded Non-Volatile Memory
 - Material Research for RRAM at IHP

2. "In-operando" measurements

- HAXPES, a non-destructive study
- in-operando experiment
- 3. V_o^{...}-based RS mechanism
 - Study of the electroforming
 - in-operando study of the OFF- and ON-states
- 4. Conclusion & Outlook

2.1. Hard X-ray Photoelectron Spectroscopy (HAXPES)

- Correlation of the material properties with the electrical state of the Ti/HfO₂/TiN RRAM cell thanks to *in-operando* HAXPES
- Understand the modifications occuring at the Ti/HfO₂ interface during the RS process.

- Standard XPS techniques are surface sensitive
- Hard X-ray PhotoElectron Spectroscopy (HAXPES) allows non-destructive depth profile characterization of the buried Ti/HfO₂ interface.
 - High flux and brilliance of photon beam
 - High energy resolution

2.2. "in-situ" HAXPES: sample preparation

- Special setup developped at IHP in order to:
 - Dynamically monitor the RS inside the HAXPES chamber for one and the same sample.
 - Investigate the differences between the ON- and OFF-states of the RS.

10 nm Ti				
interface				
14 nm HfO ₂				
interface				
112 nm TiN				

- MIM stack (thicknesses obtained via X-Ray Reflectrometry):
 - 112 nm TiN bottom electrode,
 - 14 nm HfO₂ deposited by AVD,
 - 10 nm of Ti deposited by PVD.
- *in-situ* setup realization:
 - 700 \times 700 μm^2 device divided,
 - Bottom electrode contact (200 \times 200 μm^2) opened via ToF-SIMS,
 - Sample mounted on a printed circuit board (PCB) and wire-bonded.
 - Device connected to the semiconductor analyser inside the HAXPES vacuum chamber.

- 1. Motivation
 - Embedded Non-Volatile Memory
 - Material Research for RRAM at IHP
- 2. "In-operando" measurements
 - HAXPES, a non-destructive study
 - in-operando experiment
- 3. $V_0^{"}$ -based RS mechanism
 - Study of the electroforming
 - *in-operando* study of the OFF- and ON-states
- 4. Conclusion & Outlook

3.1. Characterization of the electroforming

- Presence of a TiO_x interfacial layer between the metallic Ti top electrode and the HfO₂:
 - Decrease of the metallic Ti peak,
 - increase of the TiO_x sub-peak \rightarrow oxygen-gettering activity of the Ti.
- As-prepared \rightarrow electroformed:
 - Increase of Ti oxidation at the Ti/HfO₂ interface,
 - shift toward higher BE of all Ti, Hf and O peaks.

3.1. Origin of the peak shift

• Peak shift towards higher BE in *n*-type doped material.

- $V_0^{"}$ as a stable n-type defects in HfO₂.
- We link the observed peak shift to an <u>increase of the band bending</u> at the interface because of <u>higher space charge potential</u> created by the <u>higher</u> <u>concentration of V₀⁻⁻ at the Ti/HfO₂ interface</u>.

Y. Lebedinskii et al., JAP 101, 074504 (2007).

J. Robertson, et al., Appl. Phys. Lett. **91**, 132912 (2007).

2.1. Proposed modifications caused by the electroforming

- Chemical modifications at the Ti/HfO₂ interface:
 - Increase of the Ti oxidation at the interface by oxygengettering activity of the Ti.
 - Creation of a Ti/TiO_x/HfO_{2- δ} structure.
- Electronic modifications at the Ti/HfO₂ interface:
 - Increase of the downward band bending due to higher concentration of *n*-type dopants (V₀^{..}).
 - Decrease of $\phi_{\rm b}$ \rightarrow increase of the conduction

M. Sowinska et al., APL 100, 233509 (2012).

2.2. in-operando HAXPES: electrical results

- Successful in-operando resistive switching during HAXPES measurements:
 - 7 cycles with a R_{OFF}/R_{ON} ratio of ~ 7 and at a pressure of 1 × 10⁻⁷ mbar,
 - HAXPES spectra recorded for the virgin-, OFF- and ON-states:
 - Ti 2p line,
 - Hf 4*f*,
 - 01*s*.

- 1. Motivation
 - Embedded Non-Volatile Memory
 - Material Research for RRAM at IHP
- 2. "In-operando" measurements
 - HAXPES, a non-destructive study
 - in-operando experiment
- 3. V_o^{...}-based RS mechanism
 - Study of the electroforming
 - in-operando study of the OFF- and ON-states

4. Conclusion & Outlook

4. Conclusion

- HAXPES as a powerful technique for RRAM investigations:
 - non destructive analysis of buried interfaces,
 - in-operando experiment performed. •
- Proposed modifications induced by the electroforming:
 - $V_{\text{forming}} > 0 \rightarrow \text{oxygen migration towards TE} \rightarrow \text{Ti/HfO}_2$ interface oxidation,
 - removed oxygen atoms leave $V_0^{"}$ in the HfO₂ \rightarrow *n*-type doping of the HfO₂₋₈.
- Proposed RS mechanism in the Ti/HfO₂/TiN:
 - push-pull model of V₀^{...} migration as a function of voltage polarity, •
 - TiO_{x} interface layer acts as an oxygen reservoir. •

M. Sowinska et al., APL 100, 233509 (2012).

T. Bertaud et al., submitted to APL.

4. Outlook

- Pulse-induced *in-operando* HAXPES measurements:
 - To perform electrical measurements in adequation with future integrated devices,
 - To understand the physics of the RS degradation,
- A 4 kbit array based on Ti/HfO₂/TiN 1T1R cells was recently processed in IHP's Si CMOS technology and is currently under characterization.

D. Walczyk et al., to be presented at ISCDG, Grenoble (2012).

Thank you for your attention!

ं 🚞 🕷

bertaud@ihp-microelectronics.com